Catalytically active palladium nanoparticles embedded in an organic-inorganic fluorinated hybrid material
نویسندگان
چکیده
Palladium nanoparticles were supported on a fluorous organic-inorganic hybrid material prepared by the sol-gel process without TEOS. Recycling studies on the Heck coupling reaction have shown that the catalyst can be readily recovered and reused.
منابع مشابه
General approach for the synthesis of organic-inorganic hybrid nanoparticles mediated by supercritical CO2.
We report in this paper novel chemistry that addresses the problem of surfactant solubility in supercritical CO2 for metal nanoparticle synthesis. This new approach for the preparation of organic-functionalized inorganic nanoparticles relies on the reduction of a metal precursor in a CO2-containing insoluble polymer. Reduction of the metal with H2 leads to small nanocrystals stabilized by the p...
متن کاملOrganic-inorganic hybrid nanomaterials prepared from 4- formyl benzo-12-crown-4-ether and silica coated magnetite nanoparticles
Silica coated magnetite nanoparticles were covalent grafted with 3-aminopropyl trimethoxysilane to give APTSCMNPs. Reaction of the resulted nanomaterial with 4-formyl benzo-12-crown-4 ether afforded FB12C4/APTSMNPs nanocomposite material in which the crown ether moiety was attached through propyl chain spacer. Characterization of the prepared nanocomposite was performed wit...
متن کاملAn efficient method for the synthesis of photo catalytically active ZnO nanoparticles by a gel-combustion method for the photo-degradation of Caffeine
In this study, Zinc oxide nanoparticles were synthesized by gel-combustion method using a novel bio-fuel tapioca starch pearls, derived from the tubers of Mannihot esculenta, to investigate the photocatalytic degradation of ccaffeine. The ZnO photocatalyst was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and UV-visible spectroscopy. X-ray diffractometry result f...
متن کاملPreparation of active and robust palladium nanoparticle catalysts stabilized by diamine-functionalized mesoporous polymers.
A two-step chemical modification process is designed for synthesizing novel diamine-functionalized mesopolymers, which combine the advantage of organic polymers and mesoporous materials, and serve as an efficient scaffold for supporting highly dispersed, catalytically active and robust Pd nanoparticles (NPs).
متن کاملPhotocatalytic Coating Using Titania-Silica Core/Shell Nanoparticles
The photocatalytic coatings were prepared via incorporating the modified titania nanoparticles into epoxy-based inorganic-organic hybrid coatings. Titania nanoparticles were first synthesized from tetra-n-butyl titanate using sol-gel methods by two different calcination treatments, i.e., in mild condition (80°C) and 500°C. The formed anatase nanoparticles were further modified as Titania-Silica...
متن کامل